CSC 212: Mock Exam 1

October 13, 2022

Name:

Instructions
e Write your name at the top of each page in case the pages become separated.
e Answer the questions in the space provided. If you run out of room, continue on the back of the page.

e Questions asking you to explain or define something should be answered in complete sentences. (1-2
sentences will likely suffice for a complete explanation.)

e Questions asking for code should be written in something approximating C++. Your code does not
need to be perfect, but it should be clearly recognizable as C++.

e You may use one 8 1/2 x 11in page of notes. If you do, you must hand in your note page with th
exam.

Question | Points | Score
1 0
2 0
3 6
4 0
5 0
6 0
7 0
Total: 6

CSC 212: Exam 1 Name:

Throughout the exam, assume that we have the following Node struct defined:

struct Node {
int n;
Node* next;

1. Explain briefly what a memory leak is.

2. Explain the difference between O(f(n)) and Q(f(n)). (If you wish, you may give precise definitions of
both rather than writing a sentence.)

3. Suppose we have the following Queue class defined:

class Queue {
public:
Queue () ;
“Queue();
void Enqueue(int n);
int Dequeue();
int Size(Q)

};

Using only two Queues complete the implementation of the following Stack class. You do not need to
worry about the case where someone tries to pop from an empty stack.

class Stack {
private:
Queue *ql;
Queue *q2;

public:
Stack() {
ql = new Queue();
q2 = new Queue();

}
void Push(int n);

int Pop();
};
(a) (3 points) void Stack::Push(int n) {

CSC 212: Exam 1 Name:

}
(b) (3 points) int Stack::Pop() {

}

4. (a) Implement a function that returns true if every element in a linked list in even and false otherwise.
If the list is empty, the function should also return true. (Remember that Node was defined at the
start of the exam.)

bool AllEven(Node *head) {

Page 2

CSC 212: Exam 1 Name:

(b) What is the time complexity (big-O) of your solution (in terms of the number of elements n in the
list)? Why?

5. Suppose we have a hash table with m = 6 and h(k) = kmod 6. We will insert the following elements
into the table:
6,3,0,4,7,1

(a) Suppose we have an implementation that uses chaining to resolve collisions. Draw the state of the
chains after inserting the elements above. (Note: There are six elements to insert. You will not
use every box in the picture below. Simply leave any extras blank.)

(b) Suppose we have an implementation that resolves collisions using linear probing. Draw the state of
the backing array after inserting the elements above:

0 1 2 3 4 5

6. A string is said to be a palindrome if it is the same forwards and backwards. (For example, racecar is a
palindrome. apple is not. Implement the function IsPalindrome which returns true if the string is a
palindrome and false if not. You may assume the existence of the following Stack class, but you are
not required to use it. (There are a number of possible solutions to this problem.)

class Stack {
public:

// pop the top element from the Stack
char Pop();
// "peek" at the top element of the stack, but *do not* pop %t
char Peek();
// push an element onto the Stack
void Push(char c);
// return the number of elements on the Stack
int Size();

Page 3

CSC 212: Exam 1 Name:

bool IsPalindrome(std::string s) {

}

7. Suppose we have a sorted array of distinct, non-negative integers. Find the smallest non-negative integer
that is not in the array. For example:

e The smallest missing integer in [0, 1,2, 3,6,7,9,10] is 4.

e The smallest missing integer in [1,2,4, 5] is 0.

Write a function that returns the smallest missing integer from such an array and returns -1 if there is
no missing element. Your function should have time compexity O(logn).

int SmallestMissing(std::vector<int> arr) {

Page 4

